Skip to Content
Numerical Computing with Python
book

Numerical Computing with Python

by Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
December 2018
Beginner to intermediate
682 pages
18h 1m
English
Packt Publishing
Content preview from Numerical Computing with Python

Visualizing the trend of data

Once we have imported the two datasets, we can set out on a further visualization journey. Let's begin by plotting the world population trends from 1950 to 2017. To select rows based on the value of a column, we can use the following syntax: df[df.variable_name == "target"] or df[df['variable_name'] == "target"], where df is the dataframe object. Other conditional operators, such as larger than > or smaller than <, are also supported. Multiple conditional statements can be chained together using the "and" operator &, or the "or" operator |.

To aggregate the population across all age groups within a year, we are going to rely on df.groupby().sum(), as shown in the following example:

import matplotlib.pyplot as ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Numerical Computing with NumPy

Mastering Numerical Computing with NumPy

Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu

Publisher Resources

ISBN: 9781789953633OtherOtherErrata Page