Skip to Content
Numerical Computing with Python
book

Numerical Computing with Python

by Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
December 2018
Beginner to intermediate
682 pages
18h 1m
English
Packt Publishing
Content preview from Numerical Computing with Python

Gradient boosting classifier

Gradient boosting is one of the competition-winning algorithms that work on the principle of boosting weak learners iteratively by shifting focus towards problematic observations that were difficult to predict in previous iterations and performing an ensemble of weak learners, typically decision trees. It builds the model in a stage-wise fashion as other boosting methods do, but it generalizes them by allowing optimization of an arbitrary differentiable loss function.

Let's start understanding Gradient Boosting with a simple example, as GB challenges many data scientists in terms of understanding the working principle:

  1. Initially, we fit the model on observations producing 75% accuracy and the remaining unexplained ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Numerical Computing with NumPy

Mastering Numerical Computing with NumPy

Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu

Publisher Resources

ISBN: 9781789953633OtherOtherErrata Page