Skip to Content
Numerical Computing with Python
book

Numerical Computing with Python

by Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
December 2018
Beginner to intermediate
682 pages
18h 1m
English
Packt Publishing
Content preview from Numerical Computing with Python

Summary

In this chapter, you have learned about KNN and Naive Bayes techniques, which require somewhat a little less computational power. KNN, in fact, is called a lazy learner, as it does not learn anything apart from comparing with training data points to classify them into class. Also, you have seen how to tune the k-value using grid search technique. Whereas explanation has been provided for Naive Bayes classifier, NLP examples have been provided with all the famous NLP processing techniques to give you a flavor of this field in a very crisp manner. Though in text processing, either Naive Bayes or SVM techniques could be used as these two techniques can handle data with high dimensionality, which is very relevant in NLP, as the number ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Numerical Computing with NumPy

Mastering Numerical Computing with NumPy

Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu

Publisher Resources

ISBN: 9781789953633OtherOtherErrata Page