Skip to Content
Numerical Computing with Python
book

Numerical Computing with Python

by Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
December 2018
Beginner to intermediate
682 pages
18h 1m
English
Packt Publishing
Content preview from Numerical Computing with Python

Random forest classifier - grid search

Tuning parameters in a machine learning model play a critical role. Here, we are showing a grid search example on how to tune a random forest model:

# Random Forest Classifier - Grid Search 
>>> from sklearn.pipeline import Pipeline 
>>> from sklearn.model_selection import train_test_split,GridSearchCV 
 
>>> pipeline = Pipeline([ ('clf',RandomForestClassifier(criterion='gini',class_weight = {0:0.3,1:0.7}))]) 

Tuning parameters are similar to random forest parameters apart from verifying all the combinations using the pipeline function. The number of combinations to be evaluated will be (3 x 3 x 2 x 2) *5 =36*5 = 180 combinations. Here 5 is used in the end, due to the cross-validation of five-fold:

>>> parameters ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Numerical Computing with NumPy

Mastering Numerical Computing with NumPy

Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu

Publisher Resources

ISBN: 9781789953633OtherOtherErrata Page