December 2018
Beginner to intermediate
682 pages
18h 1m
English
Principal Component Analysis (PCA) is the dimensionality reduction technique which has so many utilities. PCA reduces the dimensions of a dataset by projecting the data onto a lower-dimensional subspace. For example, a 2D dataset could be reduced by projecting the points onto a line. Each instance in the dataset would then be represented by a single value, rather than a pair of values. In a similar way, a 3D dataset could be reduced to two dimensions by projecting variables onto a plane. PCA has the following utilities: