Skip to Content
Numerical Computing with Python
book

Numerical Computing with Python

by Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim
December 2018
Beginner to intermediate
682 pages
18h 1m
English
Packt Publishing
Content preview from Numerical Computing with Python

Principal Component Analysis - PCA

Principal Component Analysis (PCA) is the dimensionality reduction technique which has so many utilities. PCA reduces the dimensions of a dataset by projecting the data onto a lower-dimensional subspace. For example, a 2D dataset could be reduced by projecting the points onto a line. Each instance in the dataset would then be represented by a single value, rather than a pair of values. In a similar way, a 3D dataset could be reduced to two dimensions by projecting variables onto a plane. PCA has the following utilities:

  • Mitigate the course of dimensionality
  • Compress the data while minimizing the information lost at the same time
  • Principal components will be further utilized in the next stage of supervised ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Mastering Numerical Computing with NumPy

Mastering Numerical Computing with NumPy

Umit Mert Cakmak, Tiago Antao, Mert Cuhadaroglu

Publisher Resources

ISBN: 9781789953633OtherOtherErrata Page