Skip to Content
Bayesian Statistics: An Introduction, 4th Edition
book

Bayesian Statistics: An Introduction, 4th Edition

by Peter M. Lee
September 2012
Intermediate to advanced
486 pages
10h 41m
English
Wiley
Content preview from Bayesian Statistics: An Introduction, 4th Edition

2.4 Dominant likelihoods

2.4.1 Improper priors

We recall from the previous section that, when we have several normal observations with a normal prior and the variances are known, the posterior for the mean is

Unnumbered Display Equation

where  and  are given by the appropriate formulae and that this approaches the standardized likelihood

Unnumbered Display Equation

insofar as  is large compared with  , although this result is only approximate unless  is infinite. However, this would mean a prior density  which, whatever θ0 were, would have to be uniform over the whole real line, and clearly could not be represented by any proper density function. It is basic to the concept of a probability density that it integrates to 1 so, for example,

cannot possibly ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Bayesian Data Analysis, Third Edition, 3rd Edition

Bayesian Data Analysis, Third Edition, 3rd Edition

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin
Introduction to Probability

Introduction to Probability

Joseph K. Blitzstein, Jessica Hwang

Publisher Resources

ISBN: 9781118359778Purchase book