Skip to Content
Bayesian Statistics: An Introduction, 4th Edition
book

Bayesian Statistics: An Introduction, 4th Edition

by Peter M. Lee
September 2012
Intermediate to advanced
486 pages
10h 41m
English
Wiley
Content preview from Bayesian Statistics: An Introduction, 4th Edition

3.3 Jeffreys’ rule

3.3.1 Fisher’s information

In Section 2.1 on the nature of Bayesian inference, the log-likelihood function was defined as

Unnumbered Display Equation

In this section, we shall sometimes write l for  , L for  and p for the probability density function  . The fact that the likelihood can be multiplied by any constant implies that the log-likelihood contains an arbitrary additive constant.

An important concept in classical statistics which arises, for example, in connection with the Cramèr-Rao bound for the variance of an unbiased estimator, is that of the information provided by an experiment which was defined by Fisher (1925a) as

Unnumbered Display Equation

the expectation being taken over all possible values of x for fixed θ. It is important to note that the information depends on the distribution of the data rather than on any particular value of it, so that if we carry out an experiment and observe, for example, that  , then ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Bayesian Data Analysis, Third Edition, 3rd Edition

Bayesian Data Analysis, Third Edition, 3rd Edition

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin
Introduction to Probability

Introduction to Probability

Joseph K. Blitzstein, Jessica Hwang

Publisher Resources

ISBN: 9781118359778Purchase book