O'Reilly logo

Data Analysis with R - Second Edition by Tony Fischetti

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Advanced topics

Linear models are the biggest idea in applied statistics and predictive analytics. There are massive volumes written about even the smallest details of linear regression. As such, there are some important ideas that we can't go over here because of space concerns, or because it requires knowledge beyond the scope of this book. So you don't feel like you're in the dark, though, here are some of the topics we didn't cover—that I would have liked to—and why they are neat:

  • Regularization: Regularization was mentioned briefly in the subsection about balancing bias and variance. In this context, regularization is a technique wherein we penalize models for complexity, to varying degrees. My favorite method of regularizing linear ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required