Skip to Content
Data Analysis with R, Second Edition - Second Edition
book

Data Analysis with R, Second Edition - Second Edition

by Tony Fischetti
March 2018
Beginner to intermediate content levelBeginner to intermediate
570 pages
13h 42m
English
Packt Publishing
Content preview from Data Analysis with R, Second Edition - Second Edition

Exercises

Practice the following exercises to revise the concepts learned in this chapter:

  • How did we waste computation in the similarity_matrix function?
  • Both the Last.fm and the MusicBrainz API have a count value associated with each tag, which can be taken to represent the extent to which the tag applied to the artist. By ignoring this field, in both cases we implicitly used a count of 1 for every tag, making well-fitting tags just as important as relatively less well-fitting ones. Rewrite the code to take count into account, and weigh each tag proportionally to its count value. This will be challenging, but it will be invaluable for understanding the material. It will also boost your confidence as an R programmer once you finish. Go ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Exploratory Data Analysis with R

Hands-On Exploratory Data Analysis with R

Radhika Datar, Harish Garg
Bayesian Data Analysis, Third Edition, 3rd Edition

Bayesian Data Analysis, Third Edition, 3rd Edition

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin
R: Data Analysis and Visualization

R: Data Analysis and Visualization

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illés, Milán Badics, Ádám Banai, Gergely Daróczi, Barbara Dömötör, Gergely Gabler, Dániel Havran, Péter Juhász, István Margitai, Balázs Márkus, Péter Medvegyev, Julia Molnár, Balázs Árpád Szucs, Ágnes Tuza, Tamás Vadász, Kata Váradi, Ágnes Vidovics-Dancs

Publisher Resources

ISBN: 9781788393720Supplemental Content