Skip to Content
Data Analysis with R, Second Edition - Second Edition
book

Data Analysis with R, Second Edition - Second Edition

by Tony Fischetti
March 2018
Beginner to intermediate content levelBeginner to intermediate
570 pages
13h 42m
English
Packt Publishing
Content preview from Data Analysis with R, Second Edition - Second Edition

Assumptions of the independent samples t-test

Homogeneity of variance (or homoscedasticity, a scary sounding word), in this case, simply means that the variance in the miles per gallon of the automatic cars is the same as the variance in miles per gallon of the manual cars. In reality, this assumption can be violated as long as you use a Welch's T-test like we did, instead of the Student's T-test. You can still use the Student's T-test with the t.test function, like by specifying the optional parameter var.equal=TRUE. You can test for this formally using var.test or leveneTest from the car package. If you are sure that the assumption of homoscedasticity is not violated, you may want to do this because it is a more powerful test (fewer Type ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Exploratory Data Analysis with R

Hands-On Exploratory Data Analysis with R

Radhika Datar, Harish Garg
Bayesian Data Analysis, Third Edition, 3rd Edition

Bayesian Data Analysis, Third Edition, 3rd Edition

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin
R: Data Analysis and Visualization

R: Data Analysis and Visualization

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illés, Milán Badics, Ádám Banai, Gergely Daróczi, Barbara Dömötör, Gergely Gabler, Dániel Havran, Péter Juhász, István Margitai, Balázs Márkus, Péter Medvegyev, Julia Molnár, Balázs Árpád Szucs, Ágnes Tuza, Tamás Vadász, Kata Váradi, Ágnes Vidovics-Dancs

Publisher Resources

ISBN: 9781788393720Supplemental Content