Skip to Content
Data Analysis with R, Second Edition - Second Edition
book

Data Analysis with R, Second Edition - Second Edition

by Tony Fischetti
March 2018
Beginner to intermediate content levelBeginner to intermediate
570 pages
13h 42m
English
Packt Publishing
Content preview from Data Analysis with R, Second Edition - Second Edition

Multiple imputation

The big idea behind multiple imputation is that instead of generating one set of imputed data with our best estimation of the missing data, we generate multiple versions of the imputed data where the imputed values are drawn from a distribution. The uncertainty about what the imputed values should be is reflected in the variation between the multiple imputed datasets.

We perform our intended analysis separately with each of these m amounts of completed datasets. These analyses will then yield m different parameter estimates (like regression coefficients, and so on). The critical point is that these parameter estimates are different solely due to the variability in the imputed missing values, and hence, our uncertainty ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Exploratory Data Analysis with R

Hands-On Exploratory Data Analysis with R

Radhika Datar, Harish Garg
Bayesian Data Analysis, Third Edition, 3rd Edition

Bayesian Data Analysis, Third Edition, 3rd Edition

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin
R: Data Analysis and Visualization

R: Data Analysis and Visualization

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illés, Milán Badics, Ádám Banai, Gergely Daróczi, Barbara Dömötör, Gergely Gabler, Dániel Havran, Péter Juhász, István Margitai, Balázs Márkus, Péter Medvegyev, Julia Molnár, Balázs Árpád Szucs, Ágnes Tuza, Tamás Vadász, Kata Váradi, Ágnes Vidovics-Dancs

Publisher Resources

ISBN: 9781788393720Supplemental Content