Skip to Content
Data Analysis with R, Second Edition - Second Edition
book

Data Analysis with R, Second Edition - Second Edition

by Tony Fischetti
March 2018
Beginner to intermediate content levelBeginner to intermediate
570 pages
13h 42m
English
Packt Publishing
Content preview from Data Analysis with R, Second Edition - Second Edition

Predicting Categorical Variables

Our first foray into predictive analytics began with regression techniques for predicting continuous variables. In this chapter, we will be discussing a perhaps even more popular class of techniques from statistical learning known as classification.

All these techniques have at least one thing in common: we train a learner on input, for which the correct classifications are known, with the intention of using the trained model on new data whose class is unknown. In this way, classification is a set of algorithms and methods to predict categorical variables.

Whether you know it or not, statistical learning algorithms performing classification are all around you. For example, if you've ever accidently checked ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Exploratory Data Analysis with R

Hands-On Exploratory Data Analysis with R

Radhika Datar, Harish Garg
Bayesian Data Analysis, Third Edition, 3rd Edition

Bayesian Data Analysis, Third Edition, 3rd Edition

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, Donald B. Rubin
R: Data Analysis and Visualization

R: Data Analysis and Visualization

Tony Fischetti, Brett Lantz, Jaynal Abedin, Hrishi V. Mittal, Bater Makhabel, Edina Berlinger, Ferenc Illés, Milán Badics, Ádám Banai, Gergely Daróczi, Barbara Dömötör, Gergely Gabler, Dániel Havran, Péter Juhász, István Margitai, Balázs Márkus, Péter Medvegyev, Julia Molnár, Balázs Árpád Szucs, Ágnes Tuza, Tamás Vadász, Kata Váradi, Ágnes Vidovics-Dancs

Publisher Resources

ISBN: 9781788393720Supplemental Content