Skip to Content
Hands-On Mathematics for Deep Learning
book

Hands-On Mathematics for Deep Learning

by Jay Dawani
June 2020
Intermediate to advanced
364 pages
13h 56m
English
Packt Publishing
Content preview from Hands-On Mathematics for Deep Learning

Xavier initialization

As we have seen, if our weights are too small, then they vanish, which results in dead neurons and, conversely, if our weights are too big, we get exploding gradients. We want to avoid both scenarios, which means we need the weights to be initialized just right so that our network can learn what it needs to.

To tackle this problem, Xavier Glorot and Yoshua Bengio created a normalized initialization method (generally referred to as Xavier initialization). It is as follows:

Here, nk is the number of neurons in layer k.

But why does this work better than randomly initializing our network? The idea is that we want to maintain ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Publisher Resources

ISBN: 9781838647292