Skip to Content
Hands-On Mathematics for Deep Learning
book

Hands-On Mathematics for Deep Learning

by Jay Dawani
June 2020
Intermediate to advanced
364 pages
13h 56m
English
Packt Publishing
Content preview from Hands-On Mathematics for Deep Learning

Attention Mechanisms

In the preceding two chapters, we learned about convolutional neural networks and recurrent neural networks, both of which have been very effective for sequential tasks such as machine translation, image captioning, object recognition, and so on. But we have also seen that they have limitations. RNNs have problems with long-term dependencies. In this chapter, we will cover attention mechanisms, which have been increasing in popularity and have shown incredible results in language- and vision-related tasks.

The following topics will be covered in this chapter:

  • Overview of attention
  • Understanding neural Turing machines
  • Exploring the types of attention
  • Transformers

Let's get started!

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Publisher Resources

ISBN: 9781838647292