Skip to Content
Hands-On Mathematics for Deep Learning
book

Hands-On Mathematics for Deep Learning

by Jay Dawani
June 2020
Intermediate to advanced
364 pages
13h 56m
English
Packt Publishing
Content preview from Hands-On Mathematics for Deep Learning

Comparing Euclidean and non-Euclidean data

Before we learn about geometric deep learning techniques, it is important for us to understand the differences between Euclidean and non-Euclidean data, and why we need a separate approach to deal with it.

Deep learning architectures such as FNNs, CNNs, and RNNs have proven successful for a variety of tasks, such as speech recognition, machine translation, image reconstruction, object recognition and segmentation, and motion tracking, in the last 8 years. This is because of their ability to exploit and use the local statistical properties that exist within data. These properties include stationarity, locality, and compositionality. In the case of CNNs, the data they take as input can be represented ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Publisher Resources

ISBN: 9781838647292