Skip to Content
Hands-On Mathematics for Deep Learning
book

Hands-On Mathematics for Deep Learning

by Jay Dawani
June 2020
Intermediate to advanced
364 pages
13h 56m
English
Packt Publishing
Content preview from Hands-On Mathematics for Deep Learning

Polynomial regression

Linear regression, as you might imagine, isn't a one-size-fits-all solution that we can use for any problem. A lot of the relationships that exist between variables in the real world are not linear; that is, a straight line isn't able to capture the relationship. For these problems, we use a variant of the preceding linear regression known as polynomial regression, which can capture more complexities, such as curves. This method makes use of applying different powers to the explanatory variable to discover non-linear problems. This looks as follows:

Or, we could have the following:

This is the case for .

As you can ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Publisher Resources

ISBN: 9781838647292