Skip to Content
Hands-On Mathematics for Deep Learning
book

Hands-On Mathematics for Deep Learning

by Jay Dawani
June 2020
Intermediate to advanced
364 pages
13h 56m
English
Packt Publishing
Content preview from Hands-On Mathematics for Deep Learning

Summary

In this chapter, we learned about various forms of regression, such as (multiple) linear regression, polynomial regression, logistic regression, and softmax regression. Each of these models has aided us in figuring out the relationship that exists between one or more independent variable(s) and a dependent variable. For some of you, these concepts may seem very rudimentary, but they will serve us well on our journey throughout this book and in gaining a deeper understanding of the concepts to come.

In the next chapter, we will learn about feedforward neural networks.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Publisher Resources

ISBN: 9781838647292