Skip to Content
Hands-On Mathematics for Deep Learning
book

Hands-On Mathematics for Deep Learning

by Jay Dawani
June 2020
Intermediate to advanced
364 pages
13h 56m
English
Packt Publishing
Content preview from Hands-On Mathematics for Deep Learning

Understanding optimization and it's different types

In optimization, our goal is to either minimize or maximize a function. For example, a business wants to minimize its costs while maximizing its profits or a shopper might want to get as much as possible while spending as little as possible. Therefore, the goal of optimization is to find the best case of , which is denoted by x* (where x is a set of points), that satisfies certain criteria. These criteria are, for our purposes, mathematical functions known as objective functions.

For example, let's suppose we have the equation. If we plot it, we get the following graph:

You will recall from ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Math for Deep Learning

Math for Deep Learning

Ronald T. Kneusel
Deep Learning with PyTorch

Deep Learning with PyTorch

Eli Stevens, Thomas Viehmann, Luca Pietro Giovanni Antiga

Publisher Resources

ISBN: 9781838647292