B
10
10
3
:
4
3
01 2
2
3
:
1
3
001:
1
4
2
6
6
6
6
6
6
6
6
4
3
7
7
7
7
7
7
7
7
5
; R
3
! 2
3
32
R
3
B
100:
1
2
010:
1
2
001:
1
4
2
6
6
6
6
6
6
6
6
4
3
7
7
7
7
7
7
7
7
5
; R
1
! R
1
2
10
3
R
3
and R
2
! R
2
1
2
3
R
3
The required solution is x 5
1
2
; y 5
1
2
; z 5
1
4
.
3.12 Inverse Matrix Method
Consider the follow ing system of linear equations:
a
1
x 1 b
1
y 5 c
1
a
2
x 1 b
2
y 5 c
2
:
This system can also be written in the form
a
1
b
1
a
2
b
2

x
y

5
c
1
c
2

.
So, we have AX 5 B, where A 5
a
1
b
1
a
2
b
2

; X 5
x
y

; and B 5
c
1
c
2

.
Now
AX 5 B
.A
21
ðAXÞ5 A
21
B
.ðA
21
AÞX 5 A
21
B
.IX 5 A
21
B
.X 5 A
21
B
For a system of three linear equations:
a
1
x 1 b
1
y 1 c
1
z 5 d
1
a
2
x 1 b
2
y 1 c
2
z 5 d
2
a
3
x 1 b
3
y 1 c
3
z 5 d
3
8
<
:
46 Mathematical Formulas for Industrial and Mechanical Engineering
We have
A 5
a
1
b
1
c
1
a
2
b
2
c
2
a
3
b
3
c
3
2
4
3
5
; X 5
x
y
z
2
4
3
5
; and B 5
d
1
d
2
d
3
2
4
3
5
So, the relation X 5 A
21
B can be used to determine the values of x, y, and z that
satisfy the system.
Example 1
Solve the system
4x 1 3y 5 13
3x 1 y 524
Solution
The given system can be written in the form
AX 5 B
where
A 5
45
31

; X 5
x
y

; and B 5
13
24

The solution is given by X 5 A
21
B.
Let’s first find A
21
. Here
Adj:A 5
1 25
234

and A
jj
5 4 3 1 2 3 3 5 5211
A
21
5
1
A
jj
Adj:A 5
1
211
1 25
234

Now
X 5 A
21
B 5
1
211
1 25
234

13
24

52
1
11
33
255

5
23
5

.
x
y

5
23
5

Hence the required solution is x 523 and y 5 5.
47Linear Algebra
Example 2
Find the solution, if any, of the following system:
x 1 3y 2 z 523
3x 2 y 1 2z 5 1
2x 2 y 1 2z 521
8
<
:
Solution
The given system can be written as
13 21
3 212
2 212
2
4
3
5
x
y
z
2
4
3
5
5
23
1
21
2
4
3
5
So, we have AX 5 B, where
A 5
13 21
3 212
2 212
2
4
3
5
; X 5
x
y
z
2
4
3
5
; and B 5
23
1
21
2
4
3
5
Let’s find A
21
first. The cofactors of the elements of A are
A
11
5
212
212
5 0; A
12
52
32
22
522; A
13
5
3 21
2 21
521
A
21
52
3 21
212
525; A
22
5
1 21
22
5 4; A
23
52
213
2 21
527
A
31
5
3 21
212
5 5; A
32
52
1 21
32
525; A
33
5
13
3 21
5210
The matrix of cofactors is
0 22 21
254 7
5 25 210
2
4
3
5
Again
A
jj
5 a
11
A
11
1 a
12
A
12
1 a
13
A
13
5 1 3 0 1 3 3 ð22Þ1 ð21Þ3 ð21Þ525 0
A
21
5
1
A
jj
Adj:A 5
1
2 5
0 255
224 25
217 210
2
4
3
5
48 Mathematical Formulas for Industrial and Mechanical Engineering

Get Mathematical Formulas for Industrial and Mechanical Engineering now with O’Reilly online learning.

O’Reilly members experience live online training, plus books, videos, and digital content from 200+ publishers.