Skip to Content
Python Deep Learning
book

Python Deep Learning

by Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants
April 2017
Intermediate to advanced
406 pages
10h 15m
English
Packt Publishing
Content preview from Python Deep Learning

Pooling layers

In the previous section, we have derived the formula for the size for each slice in a convolutional layer. As we discussed, one of the advantages of convolutional layers is that they reduce the number of parameters needed, improving performance and reducing over-fitting. After a convolutional operation, another operation is often performed—pooling. The most classical example is called max-pooling, and this means creating (2 x 2) grids on each slice, and picking the neuron with the maximum activation value in each grid, discarding the rest. It is immediate that such an operation discards 75% of the neurons, keeping only the neurons that contribute the most in each cell.

There are two parameters for each pooling layer, similar to the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning - Second Edition

Python Deep Learning - Second Edition

Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja

Publisher Resources

ISBN: 9781786464453Supplemental Content