Skip to Content
Python Deep Learning
book

Python Deep Learning

by Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants
April 2017
Intermediate to advanced
406 pages
10h 15m
English
Packt Publishing
Content preview from Python Deep Learning

Examples

The following examples are proof-of-concepts of how to apply auto-encoders to identify anomalies. Specific tuning and advanced design considerations are out of the scope for this chapter. We will take for granted some results from the literature without going into too much theoretical ground, which has already been covered in previous chapters.

We recommend the reader to carefully read Chapter 4, Unsupervised Feature Learning and the corresponding sections regarding auto-encoders.

We will use a Jupyter notebook for our examples.

Alternatively, we could have used H2O Flow (http://www.h2o.ai/product/flow/), which is a notebook-style UI for H2O pretty much like Jupyter, but we did not want to confuse the reader throughout the book.

We also ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning - Second Edition

Python Deep Learning - Second Edition

Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja

Publisher Resources

ISBN: 9781786464453Supplemental Content