Skip to Content
Python Deep Learning
book

Python Deep Learning

by Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants
April 2017
Intermediate to advanced
406 pages
10h 15m
English
Packt Publishing
Content preview from Python Deep Learning

Model-based approaches

The approaches we've so far shown can do a good job of learning all kinds of tasks, but an agent trained in these ways can still suffer from significant limitations:

  • It trains very slowly; a human can learn a game like Pong from a couple of plays, while for Q-learning, it may take millions of playthroughs to get to a similar level.
  • For games that require long-term planning, all the techniques perform very badly. Imagine a platform game where a player must retrieve a key from one side of a room to open a door on the other side. There will rarely be a passage of play where this occurs, and even then, the chance of learning that it was the key that lead to the extra reward from the door is miniscule.
  • It cannot formulate a strategy ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning - Second Edition

Python Deep Learning - Second Edition

Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja

Publisher Resources

ISBN: 9781786464453Supplemental Content