Skip to Content
Python Deep Learning
book

Python Deep Learning

by Valentino Zocca, Gianmario Spacagna, Daniel Slater, Peter Roelants
April 2017
Intermediate to advanced
406 pages
10h 15m
English
Packt Publishing
Content preview from Python Deep Learning

Learning a value function

Let's get a bit more details on exactly how much computation the min max algorithm has to do. If we have a game of breadth b and depth d, then evaluating a complete game with min-max would require the construction of a tree with eventual d b leaves. If we use a max depth of n with an evaluation function, it would reduce our tree size to n b. But this is an exponential equation, and even though n is as small as 4 and b as 20, you still have 1,099,511,627,776 possibilities to evaluate. The tradeoff here is that as n gets lower, our evaluation function is called at a shallower level, where it may be a lot less good than the estimated quality of the position. Again, think of chess where our evaluation function is simply counting ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Deep Learning - Second Edition

Python Deep Learning - Second Edition

Ivan Vasilev, Daniel Slater, Gianmario Spacagna, Peter Roelants, Valentino Zocca
Python Deep Learning Projects

Python Deep Learning Projects

Matthew Lamons, Rahul Kumar, Abhishek Nagaraja

Publisher Resources

ISBN: 9781786464453Supplemental Content