O'Reilly logo

Effective Robotics Programming with ROS - Third Edition by Aaron Martinez, Enrique Fernández, Luis Sánchez, Anil Mahtani

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Adaptive Monte Carlo Localization

In this chapter, we are using the Adaptive Monte Carlo Localization (AMCL) algorithm for the localization. The AMCL algorithm is a probabilistic localization system for a robot moving in 2D. This system implements the adaptive Monte Carlo Localization approach, which uses a particle filter to track the pose of a robot against a known map.

The AMCL algorithm has many configuration options that will affect the performance of localization. For more information on AMCL, please refer to the AMCL documentation at http://wiki.ros.org/amcl and also at http://www.probabilistic-robotics.org/.

The amcl node works mainly with laser scans and laser maps, but it could be extended to work with other sensor data, such as a sonar ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required