Skip to Content
Hands-On Transfer Learning with Python
book

Hands-On Transfer Learning with Python

by Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh
August 2018
Intermediate to advanced
438 pages
12h 3m
English
Packt Publishing
Content preview from Hands-On Transfer Learning with Python

Learning a simple non-linear unit – logistic unit

Let's suppose we have two class classification problems; that is, we need to predict the value of a binary outcome variable, y. In terms of probability, the outcome, y, is Bernoulli-distributed conditioned on the feature, x. The neural network needs to predict the probability, P(y = 1 | x). For the output of the neural network to be a valid probability, it should lie in [0, 1]. We use a sigmoid activation function for this and get a non-linear logistic unit.

To learn the weights of the logistic unit, first we need a cost function and to find the derivatives of the cost function. From a probabilistic point of view, the cross-entropy loss arises as the natural cost function if we want to maximize ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Transfer Learning with TensorFlow 2.0

Hands-On Transfer Learning with TensorFlow 2.0

Margaret Maynard-Reid

Publisher Resources

ISBN: 9781788831307Supplemental Content