Skip to Content
Hands-On Transfer Learning with Python
book

Hands-On Transfer Learning with Python

by Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh
August 2018
Intermediate to advanced
438 pages
12h 3m
English
Packt Publishing
Content preview from Hands-On Transfer Learning with Python

Fine-tuning

This is a more involved technique where we do not just replace the final layer (for classification/regression), but we also selectively retrain some of the previous layers. Deep neural networks are highly configurable architectures with various hyperparameters. As discussed earlier, the initial layers have been seen to capture generic features, while the later ones focus more on the specific task at hand. Using this insight, we may freeze (fix weights) certain layers while retraining, or fine-tune the rest of them to suit our needs. In this case, we utilize the knowledge in terms of the overall architecture of the network and use its states as the starting point for our retraining step. This, in turn, helps us achieve better performance ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Transfer Learning with TensorFlow 2.0

Hands-On Transfer Learning with TensorFlow 2.0

Margaret Maynard-Reid

Publisher Resources

ISBN: 9781788831307Supplemental Content