Skip to Content
Hands-On Transfer Learning with Python
book

Hands-On Transfer Learning with Python

by Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh
August 2018
Intermediate to advanced
438 pages
12h 3m
English
Packt Publishing
Content preview from Hands-On Transfer Learning with Python

Bias variance trade-off

Supervised learning algorithms help us infer or learn a mapping from input data points to output signals. This learning results in a target or a learned function. Now, in an ideal scenario, the target function would learn the exact mapping between input and output variables. Unfortunately, there are no ideals.

As discussed while introducing supervised learning algorithms, we utilized a subset of data called the training dataset to learn the target function and then test the performance on another subset called the test dataset. Since the algorithm only sees a subset of all possible combinations of data, there arises an error between the predicted outputs and the observed outputs. This is called the total error or the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Transfer Learning with TensorFlow 2.0

Hands-On Transfer Learning with TensorFlow 2.0

Margaret Maynard-Reid

Publisher Resources

ISBN: 9781788831307Supplemental Content