Skip to Content
Hands-On Transfer Learning with Python
book

Hands-On Transfer Learning with Python

by Dipanjan Sarkar, Raghav Bali, Tamoghna Ghosh
August 2018
Intermediate to advanced
438 pages
12h 3m
English
Packt Publishing
Content preview from Hands-On Transfer Learning with Python

Summary

This chapter covered various advances in neural network architectures and their application to a varied set of real-world problems. We discussed the need for these architectures and why a simple deep multilayer neural network won't sufficiently solve all sorts of problems, given that it has great expressive power and a rich hypothesis space. Many of these architectures discussed will be used in later chapters when covering transfer learning use cases. References to the Python code for almost all the architectures is provided. We have also tried to clearly explain some of the very recent architectures, such as CapsNet, MemNNs, and NTMs. We will be frequently referring back to this chapter while walking you through the transfer learning ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Transfer Learning with TensorFlow 2.0

Hands-On Transfer Learning with TensorFlow 2.0

Margaret Maynard-Reid

Publisher Resources

ISBN: 9781788831307Supplemental Content