Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Extracting data for a sentiment analysis model

In Chapter 9, Text Analysis, we used DL4J to perform sentiment analysis. We will use LingPipe in this example as an alternative to our previous approach. Because we want to classify Twitter data, we chose a dataset with pre-classified tweets, available at http://thinknook.com/wp-content/uploads/2012/09/Sentiment-Analysis-Dataset.zip. We must complete a one-time process of extracting this data into a format we can use with our model before we continue with our application development.

This dataset exists in a large .csv file with one tweet and classification per line. The tweets are classified as either 0 (negative) or 1 (positive). The following is an example of one line of this data file:

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content