Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Using neural networks in data science

An Artificial Neural Network (ANN), which we will call a neural network, is based on the neuron found in the brain. A neuron is a cell that has dendrites connecting it to input sources and other neurons. Depending on the input source, a weight allocated to a source, the neuron is activated, and then fires a signal down a dendrite to another neuron. A collection of neurons can be trained to respond to a set of input signals.

 

An artificial neuron is a node that has one or more inputs and a single output. Each input has a weight assigned to it that can change over time. A neural network can learn by feeding an input into a network, invoking an activation function, and comparing the results. This function ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content