Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Apache Spark

Apache Spark is a framework for scalable data processing. It was designed to be better than Hadoop: it tries to process data in memory and not to save intermediate results on disk. Additionally, it has more operations, not just map and reduce, and thus richer APIs.

The main unit of abstraction in Apache Spark is Resilient Distributed Dataset (RDD), which is a distributed collection of elements. The key difference from usual collections or streams is that RDDs can be processed in parallel across multiple machines, in the same way, Hadoop jobs are processed. 

There are two types of operations we can apply to RDDs: transformations and actions.

  • Transformations: As the name suggests, it only changes data from one form to another. ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content