Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Extreme Gradient Boosting

By now we should have become quite familiar with machine learning and data science in Java: we have covered both supervised and unsupervised learning and also considered an application of machine learning to textual data. 

In this chapter, we continue with supervised machine learning and will discuss a library which gives state-of-the-art performance in many supervised tasks: XGBoost and Extreme Gradient Boosting. We will look at familiar problems such as predicting whether a URL ranks for the first page or not, performance prediction, and ranking for the search engine, but this time we will use XGBoost to solve the problem.

The outline of this chapter is as follows:

  • Gradient Boosting Machines and XGBoost
  • Installing ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content