Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Decision tree types

A tree can be taught by dividing an input dataset by the features. This is often done in a recursive fashion and is called recursive partitioning or Top-Down Induction of Decision Trees (TDIDT). The recursion is bounded when node's values are all of the same type as the target or the recursion no longer adds value.

Classification and Regression Tree (CART) analysis refers to two different types of decision tree types:

  • Classification tree analysis: The leaf corresponds to a target feature
  • Regression tree analysis: The leaf possesses a real number representing a feature

During the process of analysis, multiple trees may be created. There are several techniques used to create trees. The techniques are called ensemble methods ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content