Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Evaluating the model

In the next sequence of code, we evaluate the model against the training dataset. An Evaluation instance is created using an argument specifying that there are four classes. The test data is fed into the model using the output method. The eval method takes the output of the model and compares it against the test data classes to generate statistics. The getLabels method returns the expected values:

Evaluation evaluation = new Evaluation(4); INDArray output = model.output(testData.getFeatureMatrix()); evaluation.eval(testData.getLabels(), output); out.println(evaluation.stats()); 

The output of the training follows, which is produced by the ScoreIterationListener class. However, the values you get may differ due to how ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content