Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Regression analysis

Regression analysis is useful for determining trends in data. It indicates the relationship between dependent and independent variables. The independent variables determine the value of a dependent variable. Each independent variable can have either a strong or a weak effect on the value of the dependent variable. Linear regression uses a line in a scatterplot to show the trend. Non-linear regression uses some sort of curve to depict the relationships.

For example, there is a relationship between blood pressure and various factors such as age, salt intake, and Body Mass Index (BMI). The blood pressure can be treated as the dependent variable and the other factors as independent variables. Given a dataset containing these ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content