Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Using simple linear regression

Simple linear regression uses a least squares approach where a line is computed that minimizes the sum of squared of the distances between the points and the line. Sometimes the line is calculated without using the Y intercept term. The regression line is an estimate. We can use the line's equation to predict other data points. This is useful when we want to predict future events based on past performance.

In the following example we use the Apache Commons SimpleRegression class with the Belgium population dataset used in Chapter 4, Data Visualization. The data is duplicated here for your convenience:

Decade Population
1950 8639369
1960 9118700
1970 9637800
1980 9846800
1990 9969310
2000 10263618 ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content