Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Summary

In this chapter, we talked about unsupervised machine learning and about two common unsupervised learning problems, dimensionality reduction and cluster analysis. We covered the most common algorithms from each type, including PCA and K-means. We also covered the existing implementations of these algorithms in Java, and implemented some of them ourselves. Additionally, we touched some important techniques such as SVD, which are very useful in general.

The previous chapter and this chapter have given us quite a lot of information already. With these chapters, we prepared a good foundation to look at how to process textual data with machine learning and data science algorithm--and this is what we will cover in the next chapter.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content