Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Using OpenNLP to identify POS

To illustrate this process, we will be using OpenNLP (https://opennlp.apache.org/). This is an open source Apache project which supports many other NLP processing tasks.

We will be using the POSModel class, which can be trained to recognize POS elements. In this example, we will use it with a previously trained model based on the Penn TreeBank tag-set (http://www.comp.leeds.ac.uk/ccalas/tagsets/upenn.html). Various pretrained models are found at http://opennlp.sourceforge.net/models-1.5/. We will be using the en-pos-maxent.bin model. This has been trained on English text using what is called maximum entropy.

Maximum entropy refers to the amount of uncertainty in the model which it maximizes. For a given problem ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content