Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Supervised Learning - Classification and Regression

In previous chapters, we looked at how to pre-process data in Java and how to do Exploratory Data Analysis. Now, as we covered the foundation, we are ready to start creating machine learning models.

First, we start with supervised learning. In the supervised settings, we have some information attached to each observation, called labels, and we want to learn from it, and predict it for observations without labels.

There are two types of labels: the first are discrete and finite, such as true/false or buy/sell, and the second are continuous, such as salary or temperature. These types correspond to two types of supervised learning: classification and regression. We will talk about them in this ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content