Skip to Content
Java: Data Science Made Easy
book

Java: Data Science Made Easy

by Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
July 2017
Beginner to intermediate
715 pages
17h 3m
English
Packt Publishing
Content preview from Java: Data Science Made Easy

Unsupervised Learning - Clustering and Dimensionality Reduction

In the previous chapter, covered with with machine learning in Java and discussed how to approach the supervised learning problem when the label information is provided.

Often, however, there is no label information, and all we have is just some data. In this case, it is still possible to use machine learning, and this class of problems is called unsupervised learning; there are no labels, hence no supervision. Cluster analysis belongs to one of these algorithms. Given some dataset, the goal is to group the items from there such that similar items are put into the same group.

Additionally, some unsupervised learning techniques can be useful when there is label information.

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Java Data Science Cookbook

Java Data Science Cookbook

Rushdi Shams
Java for Data Science

Java for Data Science

Walter Molina, Richard M. Reese, Shilpi Saxena, Jennifer L. Reese

Publisher Resources

ISBN: 9781788475655Supplemental Content