Skip to Content
Mastering Computer Vision with TensorFlow 2.x
book

Mastering Computer Vision with TensorFlow 2.x

by Krishnendu Kar
May 2020
Beginner to intermediate
430 pages
10h 39m
English
Packt Publishing
Content preview from Mastering Computer Vision with TensorFlow 2.x

Overview of ResNet

ResNet, introduced by Kaiminh He, Xiangyu Zhang, Shaoquing Ren, and Jian Sun in the paper titled Deep Residual Learning for Image Recognition, was developed to address the accuracy degradation problem of deep neural networks with an increase in depth. This degradation is not caused by overfitting, but results from the fact that after some critical depth, the output looses the information of the input, so the correlation between the input and output starts diverging resulting in an increase in inaccuracy. The paper can be found at https://arxiv.org/abs/1512.03385.

ResNet-34 achieved a top-five validation error of 5.71%, better than BN-inception and VGG. ResNet-152 achieves a top-five validation error of 4.49%. An ensemble ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Computer Vision with TensorFlow 2

Hands-On Computer Vision with TensorFlow 2

Benjamin Planche, Eliot Andres

Publisher Resources

ISBN: 9781838827069Supplemental Content