Skip to Content
Mastering Computer Vision with TensorFlow 2.x
book

Mastering Computer Vision with TensorFlow 2.x

by Krishnendu Kar
May 2020
Beginner to intermediate
430 pages
10h 39m
English
Packt Publishing
Content preview from Mastering Computer Vision with TensorFlow 2.x

Artificial image generation using DCGANs

In Chapter 5, Neural Network Architecture and Models, we learned about DCGANs. They consist of a generator model and a discriminator model. The generator model takes in a random vector representing the feature of an image and runs through a CNN to produce an artificial image, G(z). Due to this, the generator model returns the absolute probability G(z), of generating a new image and its class. The discriminator (D) network is a binary classifier. It takes in the real image from a sample probability, distribution of images (p-data) and the artificial image from the generator in order to generate a probability, P(z), that the final image has been sampled from a real image distribution. Thus, the discriminator ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Computer Vision with TensorFlow 2

Hands-On Computer Vision with TensorFlow 2

Benjamin Planche, Eliot Andres

Publisher Resources

ISBN: 9781838827069Supplemental Content