Skip to Content
Mastering Computer Vision with TensorFlow 2.x
book

Mastering Computer Vision with TensorFlow 2.x

by Krishnendu Kar
May 2020
Beginner to intermediate
430 pages
10h 39m
English
Packt Publishing
Content preview from Mastering Computer Vision with TensorFlow 2.x

Overview of VGG16

After the success of AlexNet in 2012, more and more researchers worked on improving the CNN architecture of AlexNet to improve accuracy. The focus shifted to smaller window size, smaller filters, and smaller strides. VGG16 was introduced in 2014 by Karen Simonyan and Andrew Zisserman in the paper titled Very Deep Convolutional Networks for Large-Scale Image Recognition. The paper can be read at https://arxiv.org/abs/1409.1556.

The model achieved a 92.7% top-five test accuracy in ImageNet in ILSVRC-2014.

The VGG16 architecture is shown in the following image:

The basic idea of VGG16 is summarized as follows:

  • The maximum filter ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Hands-On Computer Vision with TensorFlow 2

Hands-On Computer Vision with TensorFlow 2

Benjamin Planche, Eliot Andres

Publisher Resources

ISBN: 9781838827069Supplemental Content