Skip to Content
Python Machine Learning By Example - Second Edition
book

Python Machine Learning By Example - Second Edition

by Yuxi (Hayden) Liu
February 2019
Beginner to intermediate
382 pages
10h 1m
English
Packt Publishing
Content preview from Python Machine Learning By Example - Second Edition

Summary

In this chapter, we started with an introduction to a typical machine learning problem, online advertising click-through prediction, and the inherent challenges, including categorical features. We then looked at tree-based algorithms that can take in both numerical and categorical features. We then had an in-depth discussion about the decision tree algorithm: the mechanics, different types, how to construct a tree, and two metrics (Gini Impurity and entropy) that measure the effectiveness of a split at a node. After constructing a tree in an example by hand, we implemented the algorithm from scratch. We also learned how to use the decision tree package from scikit-learn and applied it to predict click-through. We continued to improve ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning by Example - Third Edition

Python Machine Learning by Example - Third Edition

Yuxi (Hayden) Liu
Python Machine Learning, Second Edition - Second Edition

Python Machine Learning, Second Edition - Second Edition

Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun

Publisher Resources

ISBN: 9781789616729Supplemental Content