Skip to Content
Python Machine Learning By Example - Second Edition
book

Python Machine Learning By Example - Second Edition

by Yuxi (Hayden) Liu
February 2019
Beginner to intermediate
382 pages
10h 1m
English
Packt Publishing
Content preview from Python Machine Learning By Example - Second Edition

Semantics and topic modeling

Gensim is famous for its powerful semantic and topic modeling algorithms. Topic modeling is a typical text mining task of discovering the hidden semantic structures in a document. Semantic structure in plain English is the distribution of word occurrences. It is obviously an unsupervised learning task. What we need to do is to feed in plain text and let the model figure out the abstract "topics". We will study topic modeling in detail in Chapter 3, Mining the 20 Newsgroups Dataset with Clustering and Topic Modeling Algorithms.

In addition to robust semantic modeling methods, gensim also provides the following functionalities:

  • Word embedding: Also known as word vectorization, this is an innovative way to represent ...
Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning by Example - Third Edition

Python Machine Learning by Example - Third Edition

Yuxi (Hayden) Liu
Python Machine Learning, Second Edition - Second Edition

Python Machine Learning, Second Edition - Second Edition

Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun

Publisher Resources

ISBN: 9781789616729Supplemental Content