Skip to Content
Python Machine Learning By Example - Second Edition
book

Python Machine Learning By Example - Second Edition

by Yuxi (Hayden) Liu
February 2019
Beginner to intermediate
382 pages
10h 1m
English
Packt Publishing
Content preview from Python Machine Learning By Example - Second Edition

Visualizing the newsgroups data with t-SNE

We have just converted text from each raw newsgroup document into a sparse vector of a size of 500. For a vector from a document, each element represents the number of times a word token occurring in this document. Also, these 500 word tokens are selected based on their overall occurrences after text preprocessing, removal of stop words, and lemmatization. Now you may ask questions such as, is such occurrence vector representative enough, or does such an occurrence vector convey enough information that can be used to differentiate the document itself from documents on other topics? We can answer these questions easily by visualizing those representation vectors—we did a good job if document vectors ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning by Example - Third Edition

Python Machine Learning by Example - Third Edition

Yuxi (Hayden) Liu
Python Machine Learning, Second Edition - Second Edition

Python Machine Learning, Second Edition - Second Edition

Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun

Publisher Resources

ISBN: 9781789616729Supplemental Content