Skip to Content
Python Machine Learning By Example - Second Edition
book

Python Machine Learning By Example - Second Edition

by Yuxi (Hayden) Liu
February 2019
Beginner to intermediate
382 pages
10h 1m
English
Packt Publishing
Content preview from Python Machine Learning By Example - Second Edition

Bagging

Bootstrap aggregating or bagging is an algorithm introduced by Leo Breiman in 1994, which applies bootstrapping to machine learning problems. Bootstrapping is a statistical procedure that creates datasets from existing data by sampling with replacement. Bootstrapping can be used to analyze the possible values that arithmetic mean, variance, or other quantity can assume.

The algorithm aims to reduce the chance of overfitting with the following steps:

  1. We generate new training sets from input train data by sampling with replacement
  2. For each generated training set, we fit a new model
  3. We combine the results of the models by averaging or majority voting

The following diagram illustrates the steps for bagging, using classification as an ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Python Machine Learning by Example - Third Edition

Python Machine Learning by Example - Third Edition

Yuxi (Hayden) Liu
Python Machine Learning, Second Edition - Second Edition

Python Machine Learning, Second Edition - Second Edition

Sebastian Raschka, Jared Huffman, Vahid Mirjalili, Ryan Sun

Publisher Resources

ISBN: 9781789616729Supplemental Content