O'Reilly logo

Classic Problems of Probability by Prakash Gorroochurn

Stay ahead with the world's most comprehensive technology and business learning platform.

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, tutorials, and more.

Start Free Trial

No credit card required

Problem 32

Monty Hall, Cars, and Goats (1975)

Problem. In a TV prize-game, there are three doors (X, Y, and Z). One of them conceals a car while the other two doors hide a goat each. A contestant chooses one of the doors, say X. The game host knows which door hides the car and opens a door, say Y, which has a goat behind it. The host then gives the contestant the options of either sticking to her original choice (i.e., X) or of switching to the other unopened door (i.e., Z). Which is the better option?

Solution. Let CX, CY, and CZ be the events that, respectively, doors X, Y, and Z hide the car. Let HY be the event that the host opens door Y. Now, since the question assumes the contestant initially chooses door X and the host opens door Y, switching will be a winning strategy only if the car is behind door Z. That is, the probability of winning the car if the contestant switches is img, where by Bayes' Theorem1

img

In the above calculation, we have assumed that, when the host has two possible doors to open (i.e., if the car was behind door X), she is equally likely to open any one of them. Further, since the host does not open the door that hides the car, we have img, so that

The probability ...

With Safari, you learn the way you learn best. Get unlimited access to videos, live online training, learning paths, books, interactive tutorials, and more.

Start Free Trial

No credit card required