Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

Summary

In this chapter, we discussed real strategy games and why researchers from the AI community are trying to solve them. We also covered the complexity and properties of real strategy games and the different traditional AI approaches, such as case-based reasoning and online case-based planning to solve them and their drawbacks. We discussed the reason behind reinforcement learning being the perfect candidate for the problem and how it is successful in fulfilling the complexity and issues related to real-time strategy games where earlier traditional AI approaches failed. We also learnt about deep autoencoders and how they can be used to reduce the dimensionality of the input data and obtain a better representation of the input.

In the ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content