Skip to Content
Reinforcement Learning with TensorFlow
book

Reinforcement Learning with TensorFlow

by Sayon Dutta
April 2018
Intermediate to advanced content levelIntermediate to advanced
334 pages
10h 18m
English
Packt Publishing
Content preview from Reinforcement Learning with TensorFlow

AlphaGo – mastering Go

Traditional AI approaches based on search trees covering all possible position fail in the case of Go. The reason being the enormously huge search space because of 2.08 x 10170 possible moves and thereby, the difficulty in evaluating the strength of each possible board position. Thus, the traditional brute force approaches fail for the enormous search space of Go.

Therefore, advanced tree search such as Monte Carlo Tree Search with Deep Neural Networks was considered to be the novel approach to capture the intuition that humans use to play the game of Go. These neural networks are convolutional neural networks (CNNs) and take an image of the board, that is, the description of the board and activates it through the series ...

Become an O’Reilly member and get unlimited access to this title plus top books and audiobooks from O’Reilly and nearly 200 top publishers, thousands of courses curated by job role, 150+ live events each month,
and much more.
Start your free trial

You might also like

Deep Learning with TensorFlow - Second Edition

Deep Learning with TensorFlow - Second Edition

Giancarlo Zaccone, Vihan Jain, Md. Rezaul Karim, Motaz Saad
Deep Learning with TensorFlow 2 and Keras - Second Edition

Deep Learning with TensorFlow 2 and Keras - Second Edition

Antonio Gulli, Dr. Amita Kapoor, Sujit Pal

Publisher Resources

ISBN: 9781788835725Supplemental Content